Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.



# Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

# We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

# DUSEUI

# TinyLogic UHS Dual Buffer with Schmitt Trigger Inputs

# NC7WZ17

## Description

The NC7WZ17 is a dual buffer with Schmitt trigger inputs from onsemi's Ultra-High Speed (UHS) series of TinyLogic products. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive, while maintaining low static power dissipation over a very broad V<sub>CC</sub> operating range. The device is specified to operate over the 1.65 V to 5.5 V V<sub>CC</sub> range. The inputs and outputs are high-impedance when V<sub>CC</sub> is 0 V. Inputs tolerate voltages up to 5.5 V, independent of V<sub>CC</sub> operating voltage. Schmitt trigger inputs achieve 1 V typical hysteresis between the positive- and negative-going input threshold voltage at 5 V.

### Features

- Ultra-High Speed:  $t_{PD}$  = 3.6 ns (Typical) into 50 pF at 5 V V<sub>CC</sub>
- High Output Drive: ±24 mA at 3 V V<sub>CC</sub>
- Broad V<sub>CC</sub> Operating Range: 1.65 V to 5.5 V
- Matches Performance of LCX when Operated at 3.3 V V<sub>CC</sub>
- Power Down High-Impedance Inputs / Outputs
- Over-Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry
- Ultra-Small MicroPak<sup>TM</sup> Packages
- Space–Saving SC–88 Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

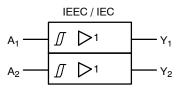
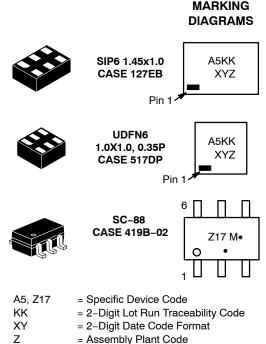




Figure 1. Logic Symbol



- = Date Code

Μ

- = Pb-Free Package
- (Microdot may be in either location)

## **ORDERING INFORMATION**

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 6.

# **Pin Configurations**

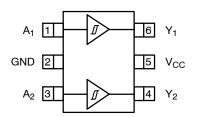
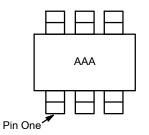




Figure 2. SC-88 (Top View)



NOTES:

- AAA represents Product Code Top Mark (see ordering code).
  Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin.

#### Figure 4. SC-88 Pin 1 Orientation

### **PIN DEFINITIONS**

| Pin # SC70 | Pin # MicroPak | Name            | Description    |
|------------|----------------|-----------------|----------------|
| 1          | 1              | A <sub>1</sub>  | Input          |
| 2          | 2              | GND             | Ground         |
| 3          | 3              | A <sub>2</sub>  | Input          |
| 4          | 4              | Y <sub>2</sub>  | Output         |
| 5          | 5              | V <sub>CC</sub> | Supply Voltage |
| 6          | 6              | Y <sub>1</sub>  | Output         |

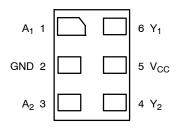



Figure 3. MicroPak (Top Through View)

# FUNCTION TABLE (Y = A)

| Inputs | Output |
|--------|--------|
| A      | Y      |
| L      | L      |
| Н      | Н      |

H = HIGH Logic Level L = LOW Logic Level

## **ABSOLUTE MAXIMUM RATINGS**

| Symbol                       | Parame                               | Min                    | Max  | Unit |    |
|------------------------------|--------------------------------------|------------------------|------|------|----|
| V <sub>CC</sub>              | Supply Voltage                       |                        | -0.5 | 6.5  | V  |
| V <sub>IN</sub>              | DC Input Voltage                     |                        | -0.5 | 6.5  | V  |
| V <sub>OUT</sub>             | DC Output Voltage                    |                        | -0.5 | 6.5  | V  |
| Ι <sub>ΙΚ</sub>              | DC Input Diode Current               | V <sub>IN</sub> < 0 V  | -    | -50  | mA |
| I <sub>OK</sub>              | DC Output Diode Current              | V <sub>OUT</sub> < 0 V | -    | -50  | mA |
| I <sub>OUT</sub>             | DC Output Current                    | -                      | ±50  | mA   |    |
| $I_{CC} \text{ or } I_{GND}$ | DC V <sub>CC</sub> or Ground Current | -                      | ±100 | mA   |    |
| T <sub>STG</sub>             | Storage Temperature Range            |                        | -65  | +150 | °C |
| TJ                           | Junction Temperature Under Bias      |                        | -    | +150 | °C |
| ΤL                           | Junction Lead Temperature (Solde     | ering, 10 Seconds)     | -    | +260 | °C |
| PD                           | Power Dissipation in Still Air       | SC-88                  | -    | 332  | mW |
|                              |                                      | MicroPak-6             | -    | 812  |    |
|                              |                                      | MicroPak2™–6           | -    | 812  |    |
| ESD                          | Human Body Model, JEDEC: JESD22-A114 |                        | -    | 4000 | V  |
|                              | Charge Device Model, JEDEC: JE       | SD22-C101              | -    | 2000 |    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### **RECOMMENDED OPERATING CONDITIONS**

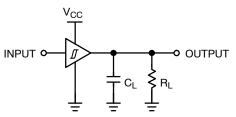
| Symbol           | Parameter                     | Conditions  | Min  | Мах             | Unit |
|------------------|-------------------------------|-------------|------|-----------------|------|
| V <sub>CC</sub>  | Supply Voltage Operating      |             | 1.65 | 5.50            | V    |
|                  | Supply Voltage Data Retention |             | 1.50 | 5.5             |      |
| V <sub>IN</sub>  | Input Voltage                 |             | 0    | 5.5             | V    |
| V <sub>OUT</sub> | Output Voltage                |             | 0    | V <sub>CC</sub> | V    |
| T <sub>A</sub>   | Operating Temperature         |             | -40  | +85             | °C   |
| $\theta_{JA}$    | Thermal Resistance            | SC-88       | -    | 377             | °C/W |
|                  |                               | MicroPak-6  | -    | 154             |      |
|                  |                               | MicroPak2-6 | -    | 154             | °C/W |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 3. Unused inputs must be held HIGH or LOW. They may not float.

### DC ELECTICAL CHARACTERISTICS

|                |                            |                     |            | T <sub>A</sub> = 25°C |      | $T_A = -40$ to $85^{\circ}C$ |     |      |      |
|----------------|----------------------------|---------------------|------------|-----------------------|------|------------------------------|-----|------|------|
| Symbol         | Parameter                  | V <sub>CC</sub> (V) | Conditions | Min                   | Тур  | Max                          | Min | Max  | Unit |
| V <sub>P</sub> | Positive Threshold Voltage | 1.65                |            | -                     | 1.00 | 1.40                         | -   | 1.40 | V    |
|                |                            | 1.80                |            | -                     | 1.07 | 1.50                         | -   | 1.50 |      |
|                |                            | 2.30                |            | -                     | 1.38 | 1.80                         | -   | 1.80 |      |
|                |                            | 3.00                |            | -                     | 1.74 | 2.20                         | -   | 2.20 |      |
|                |                            | 4.50                |            | -                     | 2.43 | 3.10                         | -   | 3.10 |      |
|                |                            | 5.50                |            | -                     | 2.88 | 3.60                         | -   | 3.60 |      |

# NC7WZ17

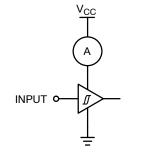

# DC ELECTICAL CHARACTERISTICS (continued)

|                  |                            |                     |                                 | T <sub>A</sub> = 25°C |      |       | T <sub>A</sub> = −40 to 85°C |      |      |
|------------------|----------------------------|---------------------|---------------------------------|-----------------------|------|-------|------------------------------|------|------|
| Symbol           | Parameter                  | V <sub>CC</sub> (V) | Conditions                      | Min                   | Тур  | Max   | Min                          | Max  | Unit |
| V <sub>N</sub>   | Negative Threshold Voltage | 1.65                |                                 | 0.20                  | 0.50 | -     | 0.20                         | -    | V    |
|                  |                            | 1.80                |                                 | 0.25                  | 0.56 | -     | 0.25                         | -    | 1    |
|                  |                            | 2.30                |                                 | 0.40                  | 0.75 | -     | 0.40                         | -    | 1    |
|                  |                            | 3.00                |                                 | 0.60                  | 0.98 | -     | 0.60                         | -    | 1    |
|                  |                            | 4.50                |                                 | 1.00                  | 1.42 | -     | 1.00                         | -    | 1    |
|                  |                            | 5.50                |                                 | 1.20                  | 1.68 | -     | 1.20                         | -    | 1    |
| $V_{H}$          | Hysteresis Voltage         | 1.65                |                                 | 0.10                  | 0.48 | 0.90  | 0.10                         | 0.90 | V    |
|                  |                            | 1.80                |                                 | 0.15                  | 0.51 | 1.00  | 0.15                         | 1.00 | 1    |
|                  |                            | 2.30                |                                 | 0.25                  | 0.62 | 1.10  | 0.25                         | 1.10 | 1    |
|                  |                            | 3.00                |                                 | 0.40                  | 0.76 | 1.20  | 0.40                         | 1.20 | 1    |
|                  |                            | 4.50                |                                 | 0.60                  | 1.01 | 1.50  | 0.60                         | 1.50 | 1    |
|                  |                            | 5.50                |                                 | 0.70                  | 1.20 | 1.70  | 0.70                         | 1.70 | 1    |
| V <sub>OH</sub>  | HIGH Level Output Voltage  | 1.65                | $V_{IN} = V_P \text{ or } V_N,$ | 1.55                  | 1.65 | -     | 1.55                         | -    | V    |
|                  |                            | 1.80                | I <sub>OH</sub> = −100 μA<br>-  | 1.70                  | 1.80 | -     | 1.70                         | -    |      |
|                  |                            | 2.30                |                                 | 2.20                  | 2.30 | -     | 2.20                         | -    |      |
|                  |                            | 3.00                |                                 | 2.90                  | 3.00 | -     | 2.90                         | -    | 1    |
|                  |                            | 4.50                |                                 | 4.40                  | 4.50 | -     | 4.40                         | -    | 1    |
|                  |                            | 1.65                | I <sub>OH</sub> = -4 mA         | 1.29                  | 1.52 | -     | 1.29                         | -    | 1    |
|                  |                            | 2.30                | I <sub>OH</sub> = -8 mA         | 1.90                  | 2.14 | -     | 1.90                         | -    | 1    |
|                  |                            | 3.00                | I <sub>OH</sub> = -16 mA        | 2.40                  | 2.75 | -     | 2.40                         | -    | 1    |
|                  |                            | 3.00                | I <sub>OH</sub> = -24 mA        | 2.30                  | 2.62 | -     | 2.30                         | -    | 1    |
|                  |                            | 4.50                | I <sub>OH</sub> = -32 mA        | 3.80                  | 4.13 | -     | 3.80                         | -    | 1    |
| V <sub>OL</sub>  | LOW Level Output Voltage   | 1.65                | $V_{IN} = V_P \text{ or } V_N,$ | -                     | 0.00 | 0.10  | -                            | 0.10 | V    |
|                  |                            | 1.80                | l <sub>OL</sub> = 100 μA        | -                     | 0.00 | 0.10  | -                            | 0.10 | 1    |
|                  |                            | 2.30                |                                 | -                     | 0.00 | 0.10  | -                            | 0.10 | 1    |
|                  |                            | 3.00                |                                 | -                     | 0.00 | 0.10  | -                            | 0.10 | 1    |
|                  |                            | 4.50                |                                 | _                     | 0.00 | 0.10  | -                            | 0.10 | 1    |
|                  |                            | 1.65                | I <sub>OL</sub> = 4 mA          | _                     | 0.08 | 0.24  | -                            | 0.24 | 1    |
|                  |                            | 2.30                | I <sub>OL</sub> = 8 mA          | _                     | 0.10 | 0.30  | -                            | 0.30 | 1    |
|                  |                            | 3.00                | I <sub>OL</sub> = 16 mA         | -                     | 0.16 | 0.40  | -                            | 0.40 | 1    |
|                  |                            | 3.00                | I <sub>OL</sub> = 24 mA         | -                     | 0.24 | 0.55  | -                            | 0.55 | 1    |
|                  |                            | 4.50                | I <sub>OL</sub> = 32 mA         | -                     | 0.25 | 0.550 | -                            | 0.55 | 1    |
| I <sub>IN</sub>  | Input Leakage Current      | 1.65 to 5.5         | V <sub>IN</sub> = 5.5 V, GND    | -                     | -    | ±0.1  | -                            | ±1.0 | μA   |
| I <sub>OFF</sub> | Power Off Leakage Current  | 0                   | $V_{IN}$ or $V_{OUT}$ = 5.5 V   | -                     | -    | 1     | -                            | 10   | μA   |
| I <sub>CC</sub>  | Quiescent Supply Current   | 1.65 to 5.50        | V <sub>IN</sub> = 5.5 V, GND    | _                     | -    | 1     | -                            | 10   | μA   |

# AC ELECTRICAL CHARACTERISTICS

|                                     |                               |                     |                          |     | T <sub>A</sub> = 25°C |      | $T_{A} = -40$ | to 85°C |      |
|-------------------------------------|-------------------------------|---------------------|--------------------------|-----|-----------------------|------|---------------|---------|------|
| Symbol                              | Parameter                     | V <sub>CC</sub> (V) | Conditions               | Min | Тур                   | Max  | Min           | Max     | Unit |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay             | 1.65                | C <sub>L</sub> = 15 pF,  | -   | 8.3                   | 14.3 | -             | 15.8    | ns   |
|                                     | (Figure 5, 6)                 | 1.80                | $R_L = 1 M\Omega$        | _   | 6.9                   | 11.9 | -             | 13.1    |      |
|                                     |                               | 2.50 ±0.20          |                          | _   | 4.8                   | 8.2  | -             | 9.0     |      |
|                                     |                               | 3.30 ±0.30          |                          | _   | 3.7                   | 5.6  | -             | 6.2     |      |
|                                     |                               | 5.00 ±0.50          |                          | _   | 3.0                   | 4.7  | -             | 5.2     |      |
|                                     |                               | 3.30 ±0.30          | $C_{L} = 50 \text{ pF},$ | -   | 4.3                   | 6.6  | -             | 7.3     |      |
|                                     |                               | 5.00 ±0.50          | $R_L = 500 \Omega$       | -   | 3.6                   | 5.6  | -             | 6.2     |      |
| C <sub>IN</sub>                     | Input Capacitance             | 0                   |                          | -   | 2.5                   | -    | -             | -       | pF   |
| C <sub>PD</sub>                     | Power Dissipation Capacitance | 3.30                |                          | -   | 10.0                  | -    | -             | -       | pF   |
|                                     | (Note 4) (Figure 7)           | 5.00                | 1                        | -   | 12.0                  | -    | -             | -       |      |

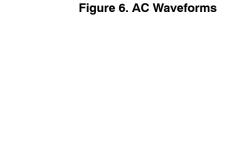
4. C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I<sub>CCD</sub>) at no output loading and operating at 50% duty cycle. C<sub>PD</sub> is related to I<sub>CCD</sub> dynamic operating current by the expression: I<sub>CCD</sub> = (C<sub>PD</sub>) (V<sub>CC</sub>) (f<sub>IN</sub>) + (I<sub>CCStatic</sub>).




- t<sub>f</sub> = 3 ns t<sub>r</sub> = 3 ns -V<sub>CC</sub> 90% 90% INPUT 50% 50% 10% 10% GND tw tын tрні VOH 50% OUTPUT 50% V<sub>OL</sub>.



5.  $C_L$  includes load and stray capacitance; Input PRR = 1.0 MHz,  $t_W = 500$  ns






NOTE:

6. Input = AC Waveform;  $t_r = t_f = 1.8$  ns; PRR = 10 MHz; Duty Cycle = 50%.

Figure 7. I<sub>CCD</sub> Test Circuit



www.onsemi.com 5

# **NC7WZ17**

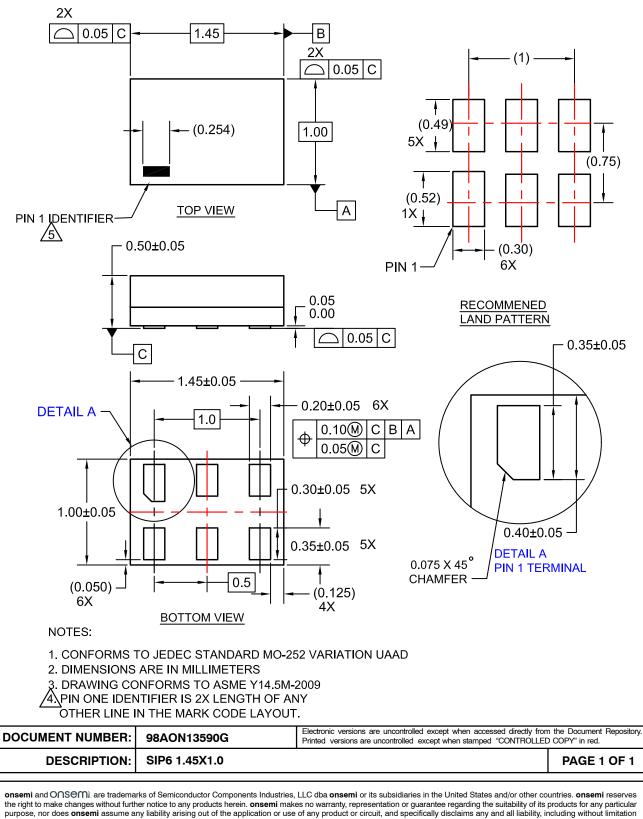
### **DEVICE ORDERING INFORMATION**

| Device     | Top Mark | Packages                                     | Shipping <sup>†</sup> |
|------------|----------|----------------------------------------------|-----------------------|
| NC7WZ17P6X | Z17      | 6-Lead SC70, EIAJ SC-88, 1.25 mm Wide        | 3000 / Tape & Reel    |
| NC7WZ17L6X | A5       | 6-Lead MicroPak, 1.00 mm Wide                | 5000 / Tape & Reel    |
| NC7WZ17FHX | A5       | 6-Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch | 5000 / Tape & Reel    |

#### **DISCONTINUED** (Note 7)

| NC7WZ17P6X-L22347 | Z17 | 6-Lead SC70, EIAJ SC-88, 1.25 mm Wide        | 3000 / Tape & Reel |
|-------------------|-----|----------------------------------------------|--------------------|
| NC7WZ17L6X-L22175 | A5  | 6-Lead MicroPak, 1.00 mm Wide                | 5000 / Tape & Reel |
| NC7WZ17FHX-L22175 | A5  | 6-Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch | 5000 / Tape & Reel |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 7. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The


most current information on these devices may be available on www.onsemi.com.

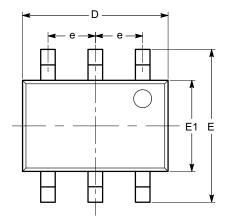
MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



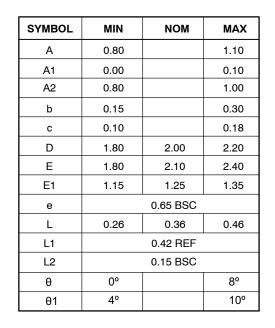
SIP6 1.45X1.0 CASE 127EB ISSUE O

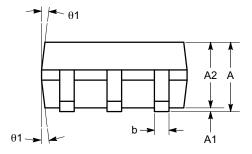
DATE 31 AUG 2016




special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

# onsemi



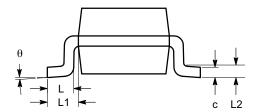


#### SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A

DATE 07 JUL 2010









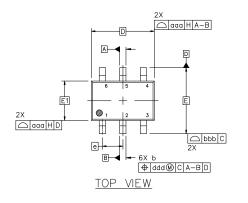

SIDE VIEW

#### Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-203.

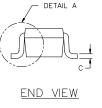


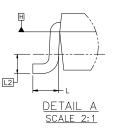

END VIEW

| DOCUMENT NUMBER:                                                                     | 98AON34266E                                                                                            | Electronic versions are uncontrolled except when accessed directly from the Document Reposition<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                             |                           |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| DESCRIPTION:                                                                         | SC-88 (SC-70 6 LEAD), 1.25X2                                                                           |                                                                                                                                                                                                                                                                                                                | PAGE 1 OF 1               |  |  |  |
| the right to make changes without furth<br>purpose, nor does <b>onsemi</b> assume an | er notice to any products herein. <b>onsemi</b> making liability arising out of the application or use | LLC dba <b>onsemi</b> or its subsidiaries in the United States and/or other cour<br>es no warranty, representation or guarantee regarding the suitability of its pr<br>of any product or circuit, and specifically disclaims any and all liability, inc<br>e under its patent rights nor the rights of others. | oducts for any particular |  |  |  |

# semi

#### SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024




# NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5.
- DIMENSIONS & AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.







|     | MI   | MILLIMETERS |      |  |  |  |  |
|-----|------|-------------|------|--|--|--|--|
| DIM | MIN. | NOM.        | MAX. |  |  |  |  |
| А   |      |             | 1.10 |  |  |  |  |
| A1  | 0.00 |             | 0.10 |  |  |  |  |
| A2  | 0.70 | 0.90        | 1.00 |  |  |  |  |
| b   | 0.15 | 0.20        | 0.25 |  |  |  |  |
| с   | 0.08 | 0.15        | 0.22 |  |  |  |  |
| D   |      | 2.00 BSC    |      |  |  |  |  |
| E   |      | 2.10 BSC    |      |  |  |  |  |
| E1  |      | 1.25 BSC    | ;    |  |  |  |  |
| е   |      | 0.65 BSC    | )    |  |  |  |  |
| L   | 0.26 | 0.36        | 0.46 |  |  |  |  |
| L2  |      | 0.15 BSC    |      |  |  |  |  |
| aaa |      | 0.15        |      |  |  |  |  |
| bbb | 0.30 |             |      |  |  |  |  |
| ccc |      | 0.10        |      |  |  |  |  |
| ddd |      | 0.10        |      |  |  |  |  |

6X 0.66 6X 0.30-2.50 0.65 PITCH

RECOMMENDED MOUNTING FOOTPRINT\*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXXM. . 0

GENERIC **MARKING DIAGRAM\*** 

6

Μ

XXX = Specific Device Code

= Date Code\*

= Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation and/or position may vary depending upon manufacturing location.

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

# **STYLES ON PAGE 2**

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98ASB42985B                 | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC-88 2.00x1.25x0.90, 0.65P |                                                                                                                                                                                     | PAGE 1 OF 2 |  |  |  |
| onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves<br>the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular<br>purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation |                             |                                                                                                                                                                                     |             |  |  |  |

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

#### SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

## DATE 18 APR 2024

| STYLE 1:<br>PIN 1. EMITTER 2<br>2. BASE 2<br>3. COLLECTOR 1<br>4. EMITTER 1<br>5. BASE 1<br>6. COLLECTOR 2 | STYLE 2:<br>CANCELLED | STYLE 3:<br>CANCELLED                                                                                      | STYLE 4:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. COLLECTOR<br>4. EMITTER<br>5. BASE<br>6. ANODE     | STYLE 5:<br>PIN 1. ANODE<br>2. ANODE<br>3. COLLECTOR<br>4. EMITTER<br>5. BASE<br>6. CATHODE               | STYLE 6:<br>PIN 1. ANODE 2<br>2. N/C<br>3. CATHODE 1<br>4. ANODE 1<br>5. N/C<br>6. CATHODE 2          |
|------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| STYLE 7:<br>PIN 1. SOURCE 2<br>2. DRAIN 2<br>3. GATE 1<br>4. SOURCE 1<br>5. DRAIN 1<br>6. GATE 2           | STYLE 8:<br>CANCELLED | STYLE 9:<br>PIN 1. EMITTER 2<br>2. EMITTER 1<br>3. COLLECTOR 1<br>4. BASE 1<br>5. BASE 2<br>6. COLLECTOR 2 | STYLE 10:<br>PIN 1. SOURCE 2<br>2. SOURCE 1<br>3. GATE 1<br>4. DRAIN 1<br>5. DRAIN 2<br>6. GATE 2 | STYLE 11:<br>PIN 1. CATHODE 2<br>2. CATHODE 2<br>3. ANODE 1<br>4. CATHODE 1<br>5. CATHODE 1<br>6. ANODE 2 | STYLE 12:<br>PIN 1. ANODE 2<br>2. ANODE 2<br>3. CATHODE 1<br>4. ANODE 1<br>5. ANODE 1<br>6. CATHODE 2 |
| STYLE 13:                                                                                                  | STYLE 14:             | STYLE 15:                                                                                                  | STYLE 16:                                                                                         | STYLE 17:                                                                                                 | STYLE 18:                                                                                             |
| PIN 1. ANODE                                                                                               | PIN 1. VREF           | PIN 1. ANODE 1                                                                                             | PIN 1. BASE 1                                                                                     | PIN 1. BASE 1                                                                                             | PIN 1. VIN1                                                                                           |
| 2. N/C                                                                                                     | 2. GND                | 2. ANODE 2                                                                                                 | 2. EMITTER 2                                                                                      | 2. EMITTER 1                                                                                              | 2. VCC                                                                                                |
| 3. COLLECTOR                                                                                               | 3. GND                | 3. ANODE 3                                                                                                 | 3. COLLECTOR 2                                                                                    | 3. COLLECTOR 2                                                                                            | 3. VOUT2                                                                                              |
| 4. EMITTER                                                                                                 | 4. IOUT               | 4. CATHODE 3                                                                                               | 4. BASE 2                                                                                         | 4. BASE 2                                                                                                 | 4. VIN2                                                                                               |
| 5. BASE                                                                                                    | 5. VEN                | 5. CATHODE 2                                                                                               | 5. EMITTER 1                                                                                      | 5. EMITTER 2                                                                                              | 5. GND                                                                                                |
| 6. CATHODE                                                                                                 | 6. VCC                | 6. CATHODE 1                                                                                               | 6. COLLECTOR 1                                                                                    | 6. COLLECTOR 1                                                                                            | 6. VOUT1                                                                                              |
| STYLE 19:                                                                                                  | STYLE 20:             | STYLE 21:                                                                                                  | STYLE 22:                                                                                         | STYLE 23:                                                                                                 | STYLE 24:                                                                                             |
| PIN 1. I OUT                                                                                               | PIN 1. COLLECTOR      | PIN 1. ANODE 1                                                                                             | PIN 1. D1 (i)                                                                                     | PIN 1. Vn                                                                                                 | PIN 1. CATHODE                                                                                        |
| 2. GND                                                                                                     | 2. COLLECTOR          | 2. N/C                                                                                                     | 2. GND                                                                                            | 2. CH1                                                                                                    | 2. ANODE                                                                                              |
| 3. GND                                                                                                     | 3. BASE               | 3. ANODE 2                                                                                                 | 3. D2 (i)                                                                                         | 3. Vp                                                                                                     | 3. CATHODE                                                                                            |
| 4. V CC                                                                                                    | 4. EMITTER            | 4. CATHODE 2                                                                                               | 4. D2 (c)                                                                                         | 4. N/C                                                                                                    | 4. CATHODE                                                                                            |
| 5. V EN                                                                                                    | 5. COLLECTOR          | 5. N/C                                                                                                     | 5. VBUS                                                                                           | 5. CH2                                                                                                    | 5. CATHODE                                                                                            |
| 6. V REF                                                                                                   | 6. COLLECTOR          | 6. CATHODE 1                                                                                               | 6. D1 (c)                                                                                         | 6. N/C                                                                                                    | 6. CATHODE                                                                                            |
| STYLE 25:                                                                                                  | STYLE 26:             | STYLE 27:                                                                                                  | STYLE 28:                                                                                         | STYLE 29:                                                                                                 | STYLE 30:                                                                                             |
| PIN 1. BASE 1                                                                                              | PIN 1. SOURCE 1       | PIN 1. BASE 2                                                                                              | PIN 1. DRAIN                                                                                      | PIN 1. ANODE                                                                                              | PIN 1. SOURCE 1                                                                                       |
| 2. CATHODE                                                                                                 | 2. GATE 1             | 2. BASE 1                                                                                                  | 2. DRAIN                                                                                          | 2. ANODE                                                                                                  | 2. DRAIN 2                                                                                            |
| 3. COLLECTOR 2                                                                                             | 3. DRAIN 2            | 3. COLLECTOR 1                                                                                             | 3. GATE                                                                                           | 3. COLLECTOR                                                                                              | 3. DRAIN 2                                                                                            |
| 4. BASE 2                                                                                                  | 4. SOURCE 2           | 4. EMITTER 1                                                                                               | 4. SOURCE                                                                                         | 4. EMITTER                                                                                                | 4. SOURCE 2                                                                                           |
| 5. EMITTER                                                                                                 | 5. GATE 2             | 5. EMITTER 2                                                                                               | 5. DRAIN                                                                                          | 5. BASE/ANODE                                                                                             | 5. GATE 1                                                                                             |
| 6. COLLECTOR 1                                                                                             | 6. DRAIN 1            | 6. COLLECTOR 2                                                                                             | 6. DRAIN                                                                                          | 6. CATHODE                                                                                                | 6. DRAIN 1                                                                                            |

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B                 | 5B Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:     | SC-88 2.00x1.25x0.90, 0.65P |                                                                                                                                                                                        | PAGE 2 OF 2 |  |  |  |
|                  |                             |                                                                                                                                                                                        |             |  |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



UDFN6 1.0X1.0, 0.35P CASE 517DP ISSUE O DATE 31 AUG 2016 0.89 -ン|0.05|C в 1.00±0.050 А 0.35 2X 5X 0.40 PIN 1 MIN 250uM 0.66 1.00±0.050 1X 0.45 □ 0.05 C TOP VIEW - 6X 0.19 2X **RECOMMENDED LAND PATTERN** FOR SPACE CONSTRAINED PCB 0.05 C 0.90 -0.35 0.50±0.05 С 5X 0.52 SIDE VIEW 6X 0.14±0.05 (0.08) 4X — 0.73 2 DETAIL A 1 3 1X 0.57 – 0.20 6X ALTERNATIVE LAND PATTERN FOR UNIVERSAL APPLICATION - (0.05) 6X 5X 0.30±0.05 0.60 4 0.10(M) C B A 0.35 (0.08) .05 C 4X 0.35±0.050 BOTTOM VIEW NOTES: A. COMPLIES TO JEDEC MO-252 STANDARD **B. DIMENSIONS ARE IN MILLIMETERS.** C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009 0.075X45° DETAIL A CHAMFER PIN 1 LEAD SCALE: 2X

| DOCUMENT NUMBER: | 98AON13593G          | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | UDFN6 1.0X1.0, 0.35P |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>